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Abstract

Planning for rover operations involves a sig-
nificant amount of uncertainty. With lim-
ited a priori knowledge of the area a rover
will explore, it is difficult to predict the af-
fects of actions including their duration and
the amount of resources they will consume.
In addition, the system may not even know
ahead of time all of the goals it will be asked
to achieve as new opportunities may be iden-
tified during the mission. We are develop-
ing the OASIS system to enable rovers to
generate and execute high quality mission
operations plans and to identify and exploit
new science opportunities that may arise dur-
ing the mission. OASIS combines planning
and machine learning techniques to achieve
these results. In this paper we discuss how
OASIS handles these types of uncertainties
and present results from testing the system in
simulation and on rover hardware.

1 Introduction
Planetary exploration by its nature involves a significant
amount of uncertainty. The objective of such missions
is to gather information about previously unknown ar-
eas. As such, little a priori information may be available
about the nature of the terrain a rover must explore or the
obstacles that it will encounter. This makes it challeng-
ing to develop an operation sequence as it is difficult to
estimate the time and resources required by rover activi-
ties.

In addition, we are developing technologies that en-
able rovers to identify potentially interesting science op-
portunities on their own. This will provide important ca-
pabilities for rovers such as enabling rovers to identify
opportunities that might have otherwise gone unnoticed
or to take advantage of short-lived science opportunities
such as a passing dust devil. However, this capability
also adds another element of uncertainty to mission op-
erations as the rover will not know ahead of time all the
science goals it will be asked to work on. New goals

with different priorities may be posted to the system at
any time.

We have developed the OASIS (Onboard Au-
tonomous Science Investigation System) integrated sci-
ence analysis and planning system that enables planetary
rovers to generate and execute high quality mission op-
erations plans in the presence of these types of uncer-
tainty. OASIS includes a continuous planning system to
generate operations plans given prioritized science goals
and mission constraints and to monitor and repair plans
during execution. The system also includes a data analy-
sis unit that uses machine learning algorithms to perform
onboard processing of collected science data. When a
science opportunity is detected, one or more requests
are sent to the planning and execution system which at-
tempts to accomplish these additional objectives while
still achieving current mission goals.

2 OASIS
The OASIS system provides onboard science analysis
coupled with planning and execution. The system en-
ables a rover to carry out prioritized science goals com-
manded from Earth as well as opportunistic science goals
identified by onboard data analysis. Figure 1 shows the
main components of the OASIS system and how they in-
teract to analyze data and re-task the rover to respond to
opportunistic science events. OASIS consists of the fol-
lowing components:

Planning and Scheduling: generates operations plans
for mission goals and dynamically modifies plan
in response to new science requests.

Execution: carries out the rover functional capabili-
ties to perform the plan and collect data. Oasis
TDL [Simmons and Apfelbaum, 1998] for its Ex-
ecutive and the CLARAty[Nesnaset al., 2003]
functional layer for low-level robotic capabilities.

Feature Extraction: detects rocks in images and ex-
tracts rock properties (e.g. shape and texture).

Data Analysis: uses extracted features to assess the sci-
entific value of the planetary scene and to generate
new science objectives that will further contribute
to this assessment.
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Figure 1: OASIS architecture.

The feature extraction and data analysis components
of OASIS have been described previously in[Castano
et al., 2004]. Here we will give a brief overview of
these components and concentrate on the planning and
scheduling unit and how it supports opportunistic sci-
ence.

2.1 Feature Extraction
Our initial emphasis in OASIS has focused on image
analysis and the characterization of surface rocks. Rocks
are among the primary features populating the Martian
landscape and the understanding of rocks on the surface
is a first step leading to more complex regional geologi-
cal assessments.

Images are segmented using a rock detection algo-
rithm based on edge detection and tracing. Next, a set of
properties is extracted from each rock. Our feature ex-
traction priorities are based upon our knowledge of how
a geologist in the field would extract information. Im-
portant features to look for and categorize include albedo
(an indicator of rock surface reflectance properties), vi-
sual texture (which provides valuable clues to mineral
composition and geological history), shape, size, color
and arrangement of rocks. Currently our system identi-
fies the first three of this set; future work will expand this
to cover additional features.

2.2 Data Analysis
After features have been extracted from each rock, OA-
SIS runs a set of data analysis algorithms to look for in-
teresting rocks. Two of these algorithms can result in
the generation of science alerts: key target signature and
novelty detection.

Key Target Signature: enables scientists to effi-
ciently and easily stipulate the value and importance of
certain features. Scientists often have an idea of what
they expect to find during a rover mission and/or are
looking for specific clues that reflect signs of life or wa-
ter (past or present). Using this technique, target feature

vectors can be pre-specified and an importance value as-
signed to each of the features. Rocks are then prioritized
as a function of the weighted Euclidean distance of their
extracted features from the target feature vector.

Novelty Detection: detects and prioritizes unusual
rocks that are dissimilar to previous rocks encountered.
We have looked at three different learning techniques for
novelty detection: distance-based using k-means clus-
tering, probability-based using Gaussian mixture models
and discrimination-based using kernel one-class classi-
fier. The general idea is that as the rover collects data
about the rocks in an area, the machine learning tech-
niques will enable it to build a model of the characteristic
rocks. If a new sample falls well outside of this model,
then it is considered novel and potentially worthy of fur-
ther investigation.

2.3 Science Alert Protocol

Using the above algorithms, the data analysis software
can flag rocks that should be further analyzed and pro-
duce a new set of measurement goals. We call this ca-
pability the science alert, since it alerts other onboard
software that new and high priority science opportuni-
ties have been detected. OASIS currently supports two
types of alerts. Astop and call homealert indicates that
the rover should remain at its current location until it has
received further instructions form Earth. Such an alert
would typically be reserved for situations in which data
analysis has made an extremely interesting observation
and the rover should stay where it is to avoid the risk of
losing the target. The second class of alerts isdata sam-
ple requestsin which the rover is requested to perform
an additional science measurement and then continue on
with previously scheduled activities. Achieving this alert
may require the rover to change its heading or possibly
its position.



2.4 Planning and Scheduling
The objectives of OASIS’s planning and scheduling
component is to maximize the value of the science that is
performed by the rover and to ensure that the operations
plan satisfies rover and mission constraints. To provide
robust execution, the system must respond to problems
that might arise during plan execution, such as an activity
consuming more resource than expected. To maximize
the value of the plan, the system must exploit opportu-
nities that arise. These may include additional available
time due to an activity taking less time than expected or
a new, highly interesting goal that has been identified by
Science Analysis.

Planning and scheduling capabilities in OASIS are
provided by CASPER[Estlin et al., 2002; Chienet al.,
2000], which employs a continuous planning technique
where the planner continually evaluates the current plan
and modifies it when necessary based on new state and
resource information. Rather than consider planning a
batch process, where planning is performed once for a
certain time period and set of goals, the planner has a cur-
rent goal set, a current rover state, and state projections
into the future for that plan. At any time an incremental
update to the goals or current state may update the cur-
rent plan. This update may be an unexpected event (such
as a new science opportunity) or a current reading for a
particular resource level (such as power). The planner is
then responsible for maintaining a plan consistent with
the most current information.

A plan consists of a set of grounded (i.e., time-tagged)
activities that represent different rover actions and be-
haviors. Rover state in CASPER is modeled by a set of
plan timelines, which contain information on states, such
as rover position, and resources, such as power. Time-
lines are calculated by reasoning about activity effects
and represent the past, current and expected state of the
rover over time. As time progresses, the actual state of
the rover drifts from the state expected by the timelines,
reflecting changes in the world. If an update results in
a problem, such as an activity consuming more mem-
ory than expected and thereby over-subscribing RAM,
CASPER re-plans, using iterative repair[Zwebenet al.,
1994], to address conflict.

CASPER includes an optimization framework for rea-
soning about soft constraints. User-defined preferences
are used to compute plan quality based on how well the
plan satisfies these constraints. Optimization proceeds
similar to iterative repair. For each preference, an opti-
mization heuristic generates modifications that could po-
tentially improve the plan score.

We have developed a domain specific control algo-
rithm within CASPER to support the objectives of max-
imizing plan quality and ensuring robust execution. Fig-
ure 2 provides a high level description of this algorithm.

Initial Plan Generation
We use a Depth First Branch and Bound algorithm to
generate the initial operations sequence. The input to the

system is a set of prioritized science requests and con-
straints on the time and energy available for carrying out
the mission. The initial plan maximizes the value of sci-
ence goals that can be achieved under these constraints.

Plan Execution

CASPER monitors updates from the Executive as the
plan is executed, checking for problems that must be re-
solved or opportunities that can be exploited. A problem
can occur with an activity at any point during its lifetime.
For examples, an update may indicate that there will be a
problem with an activity scheduled to start at some time
in the future. In this case, CASPER will use iterative re-
pair as part of the optimization loop to try to resolve the
conflict.

Problems may also occur for activities that have al-
ready been passed to the Executive but have not yet be-
gun execution. In this case, CASPER will send a rescind
message for the problematic activity to the Executive. If
the Executive receives the message before the activity
has begun execution, it will delete it and send CASPER a
confirmation. If the activity has already begun execution,
the Executive will abort the activity and send an update
to CASPER once the activity has been aborted.

The Executive itself monitors problems with activities
that are currently executing. If a problem is detected, it
is the responsibility of the executive to abort the activity
and send an update to CASPER to let CASPER know
that the activity was aborted.

While the first priority of the planning and scheduling
system is to ensure robust execution, it is also continually
checking for opportunities to increase the value the mis-
sion. An update from the Executive may indicate that an
activity took less time or energy than predicted. In this
case, it may be possible to achieve a goal that was not in-
cluded in the initial plan. During the optimization loop,
if all conflicts have been resolved, CASPER will select
a high priority goal from the set of unsatisfied goals and
add it to the schedule. This will most likely introduce
new conflicts and the following optimization iterations
will be spent trying to resolve them. If the conflicts can
be resolved, the plan score will be increased and this plan
will be saved as the best seen so far.

If an opportunistic science opportunity has been iden-
tified by Data Analysis, CASPER will try to add it to the
plan. Again, this is likely to introduce conflicts and it-
erative repair will be used to try to fix them. It may be
that the rover’s schedule is too constrained to achieve the
opportunistic goal. We set a timer for each opportunistic
goal and if the timer expires before the goal is achieved,
the goal is permanently deleted.

As a final check to try to maximize the use of rover
resources, after the optimize loop, if there are no cur-
rently executing activities, CASPER will look ahead in
the schedule to see if a future activity can be moved up
in time without causing a conflict. If so, this will result
in packing the schedule, limiting rover idle time.



Input
Prioritized science goals from Earth
Time constraint
Resource constraints

Initial Plan Generation
Run Depth First Branch and Bound given initial science goals and constraints

Plan Execution
While running

Get current time
Process any updates from Executive
For each activity scheduled to start within<n> seconds

If activity does not contribute to an existing conflict, send to Executive
If there are conflicts in the schedule

If an activity already sent to executive is contributing, rescind activity
Optimize:

for i = 1 to numoptimize iterations
If score of current plan is best so far, save plan
If there is an unsatisfied opportunistic science goal, satisfy it
Else, if there are conflicts, perform an iteration of repair
Else, if there are unsatisfied science goals, satisfy one from set of highest priority
science goals

Reload plan with highest score
If an opportunistic science goal has not been satisfied for opscitime limit, delete the goal
If no activities are currently executing, check if an activity in the future can be moved up in
time

Figure 2: CASPER control algorithm for rover domain.

3 System Testing

To evaluate our system we performed a series of tests
both in simulation and using rover hardware in the JPL
Mars Yard (Figure 3). These tests covered a wide range
of scenarios that included the handling of multiple, prior-
itized science targets, limited time and resources, oppor-
tunistic science events, resource usage uncertainty caus-
ing under or over-subscriptions of power and memory,
large variations in traverse time, and unexpected obsta-
cles blocking the rover’s path.

Our testing scenarios typically consisted of a number
of science targets specified at certain locations. A map
was used that would represent a sample mission-site lo-
cation where data would be gathered using multiple in-
struments at a number of locations. Figure 4 shows a
sample scenario that was run as part of these tests. This
particular map is of the JPL Mars Yard. The pre-specified
science targets represented targets that would be commu-
nicated by scientists on Earth. These targets were typi-
cally prioritized and for many scenarios constraints on
time, power or memory would limit the number of sci-
ence targets that could be handled. The map also shows
the path that was planned for the rover and the path the
rover actually followed. These are not necessarily the
same as the planned path does not account for all the

obstacles the rover may have to avoid. A large focus of
our tests was to improve system robustness and flexibility
in a realistic environment. Towards that goal we used a
variety of target locations and consistently selected new
science targets and/or new science target combinations
that had not been previously tested.

Another primary scenario element was dynamically
identifying and handling opportunistic science events.
For these tests, we concentrated on a particular type of
event, which was finding rocks with a high albedo mea-
surement (i.e., light or white-colored rocks). This setting
was an example of using the data analysis algorithm for
target signature, where a particular terrain signature is
identified as having a high interest level. If rocks were
identified in hazard camera imagery that had a certain in-
terest score, then a science alert was created and sent to
the planner. If a science alert was detected the planner
attempted to modify the plan so an additional image of
the rock of interest was acquired.

Other important scenario elements included adding
or deleted ground-specified science targets based in re-
source under or over-subscriptions. For instance, in some
tests, the rover covered distances faster than expected and
the planner was able to add in additional science targets
that could not be fit into the original plan. Conversely,
in other tests, the rover used more power than expected



Figure 3: Testing with the FIDO rover in the Mars Yard.

Figure 4: Example scenario.

during traverses (or science measurements), which even-
tually caused a power over-subscription. The planner re-
solved this situation by deleting some lower priority sci-
ence targets. Unexpected energy drops during a traverse
could also be handled by the executive, which detects
the shortfall and stops the current traverse if there is not
enough energy to complete it. In all cases, the planning
and execution system attempts to preserve as many high
priority science targets as possible with current resource
and time settings.

3.1 Discussion of Test Results
We are in the process of developing a formal evaluation
process by which we will be able to obtain quantitative
measurements of how well our system provides robust
and opportunistic planning and execution. At this point

we have more anecdotal results from our extensive test-
ing in simulation and with rover hardware in the JPL
Mars Yard.

Tests in the Mars Yard typically consisted of 20-50
meter runs over a 100 square meter area with many obsta-
cles that cause deviations in the rover’s path. Most rocks
in the Mars Yard are dark in color, thus we brought in
a number of whiter rocks to trigger science alerts during
rover traverses. Science measurements using rover hard-
ware were always images, since other instruments were
not readily available (e.g., spectrometer). However dif-
ferent types of measurements were included when testing
in simulation.

As a final test of our system, we performed a several
hour long demonstration in October 2004. This demon-
stration covered the elements previously presented in this
section. Further, the combination of science targets used
had not been previously tested with. This set also in-
cluded a science target that was selected that day by a
present Mars Exploration Rover (MER) scientist. Rocks
intended to cause science alerts were also placed in new
locations not previously used. Overall, the demonstra-
tion was very successful. Two scenario runs were per-
formed. Both had multiple targets with time or resource
constraints preventing all targets from being included in
the initial plan. In the first run a number of science alerts
were correctly identified and handled. This run also had
an additional science target added dynamically in the
run due to the rover traveling faster than estimated. In
the second run, lower priority targets were deleted due
to more power being used in early traverses than ex-
pected. The software presented in this paper (planning,
scheduling, execution, feature extraction and data anal-
ysis) operated correctly in all cases and caused no un-
desirable behavior. In general, the rovers operated fully
autonomously and traveled over 40 meters.

While the system performed well during testing, we
have identified some areas for in which the system’s han-
dling of uncertainty could be improved. While the plan-



ning system can respond appropriately when activities do
not run in the estimated time (whether they take more
time or less time than predicted) it would be better if
the system could make more accurate predictions as the
planner could do a better job optimizing the value of the
mission plan. This would reduce the time the planner
spends replanning and, in some cases, could result in
higher quality plans. As an example of how this could
result in higher quality plans, consider the case where
activities take less time than the planner predicts. If the
planner overestimated the duration of activities, it might
leave out a low priority science goal near its starting posi-
tion because it estimated there would be insufficient time
to accomplish the goal. However, by the end of the plan,
the planner finds it had more time than expected and can
now include additional goals. However there may be in-
sufficient time at this point to go back to that earlier goal.
If the planner had a more accurate prediction of activity
durations it would have known to include the goal in its
schedule and would have completed it earlier on.

The challenge in making such predictions is that the
duration of traverse activities depend on the nature of
the terrain and the amount of obstacles the rover will en-
counter, which can be difficult to predict ahead of time.
A possible solution may be to allow the rover adjust its
predictive model of its activities based on its experience
during mission. Techniques such as regression tree learn-
ing have been shown to allow robots to learn such predic-
tive models for navigation actions. CITE

Another improvement would be to explicitly reason
about the uncertainty of activities. This would enable
the planner to make tradeoffs between actions that may
result in the collection of valuable science but may have
a high uncertainty in the outcome.

4 Related Work

The objectives of OASIS are similar to those of the Au-
tonomous Sciencecraft Experiment (ASE)[Sherwoodet
al., 2003] which also uses science analysis to generate
additional goals for a planner. OASIS differs from ASE
in the types of feature extraction and data analysis that
are performed. In addition, while ASE has focused on
planning for orbiter missions, the focus for OASIS has
been on ground operations. To support this type of plan-
ning OASIS must deal with the high degree of uncer-
tainty inherent in ground operations and integrate path
planning into the planning and scheduling process. Fi-
nally, in OASIS it is often necessary to temporarily halt
currently executing activities, such as a traverse, in order
to accomplish new science goals.

A number of other systems have used planning meth-
ods to coordinate robot behavior (e.g.[Bonassoet al.,
1997; Alami et al., 1998]). However, these systems
generate plans with a batch approach where plans are
generated for a certain time period and if re-planning
is required, an entire new plan must be produced. In
OASIS, plans are continuously modified in response to

changing conditions and goals. The CPS planner gener-
ates contingent plans which are then executed onboard a
rover and can be modified at certain points if failures oc-
cur[Bresinaet al., 1999]. Since only a limited number of
contingencies can be anticipated, our approach provides
more onboard flexibility to new situations. If a situation
occurs onboard for which there is not a pre-planned con-
tingency, the rover must be halted to wait for communi-
cation with ground.

5 Conclusions
OASIS supports opportunistic science by integrating
data analysis algorithms, which identifies potentially
interesting science measurements, with planning and
scheduling algorithms, which enables the rover to re-
spond to these new requests. Our current system has
been tested with several scenarios in simulation and on
prototype rover hardware. In these scenarios we demon-
strate the systems ability to respond appropriately to
problems with plan execution and to exploit unexpected
opportunities that might arise.

Currently, the planner preserves the original mission
goals when attempting to perform opportunistic science.
We will relax this constraint and allow the system to use
priorities to determine when it is appropriate to achieve
opportunistic science at the cost of existing goals. There
are significant challenges with introducing autonomous
techniques into the mission operations culture. We are
taking steps to address this by introducing MER scien-
tists to off-line versions of our software.
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